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From Linear Regression to 
Weighted Nonlinear Regression
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Linear Regression

Linear regression searches a linear mapping between input x and 

output y, parametrized by the slope vector w and intercept b.
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 ; , Ty f x w b w x b  

One can omit the intercept by centering the data:

Linear Regression

Linear regression searches a linear mapping between input x and 

output y, parametrized by the slope vector w and intercept b.
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Linear Regression

Linear regression searches a linear mapping between input x and 

output y, parametrized by the slope vector w.
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Linear Regression
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All points have equal weight.

Regression through weighted Least Square

Weighted Linear Regression
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 Standard linear regression
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Points in red have large weights.

Weighted Linear Regression
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Regression through weighted Least Square
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Weighted Linear Regression

Points in red have large weights.
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Regression through weighted Least Square
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Minimizing for loss, one gets a closed-form best estimator for : 
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Computing the optimal regressor
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Assumes that a single linear dependency applies everywhere. 

Not true for data sets with local dependencies.
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Limitations of Linear Regression
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Need a regression method to estimate local linear dependencies
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Locally Weighted Regression
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X: query point

Estimate is determined through local influence of each group of datapoints
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Locally Weighted Regression

Estimate is determined through local influence of each group of datapoints

X: query point

 ŷ x

Generates a smooth 

function y(x)

       
1 1

/      :  weights function of xi
i j i

M M

i j

y x x y x x  
 

  

y

ℝ

           
,

= , ,   with  , ,  , :norm-2
i

i i i
d x x

i x K d x x K d x x e d x x






APPLIED MACHINE LEARNING

13

Locally Weighted Regression

Estimate is determined through local influence of each group of datapoints
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Model-free regression! 

No longer explicit model of the form
Ty w x

Regression computed at each query point. 

Depends on training points.
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Locally Weighted Regression

Estimate is determined through local influence of each group of datapoints
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Which training points?

Which kernel?
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xBlue: true function
Red: estimated function

Good prediction depends on the choice of datapoints.

Data-driven Regression
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Good prediction depends on the choice of datapoints.

The more datapoints, the better the fit.

Computational costs increase dramatically with number of datapoints

x

Data-driven Regression

Blue: true function
Red: estimated function

Data-driven Regression
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Several methods in ML for performing non-linear regression.

Differ in the objective function, in the amount of parameters.

K-nearest neighbors (KNN ) uses all datapoints (model-free) 

x

Data-driven Regression

Blue: true function
Red: estimated function

Data-driven Regression
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Several methods in ML for performing non-linear regression.

Differ in the objective function, in the amount of parameters.

K-nearest neighbors (KNN ) uses all datapoints (model-free) 
Support Vector Regression (SVR) picks a subset of datapoints (support vectors)

x

Data-driven Regression

Blue: true function
Red: estimated function

Data-driven Regression
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Several methods in ML for performing non-linear regression.

Differ in the objective function, in the amount of parameters.

K-nearest neighbors (KNN ) uses all datapoints (model-free) 
Support Vector Regression (SVR) picks a subset of datapoints (support vectors)
Gaussian Mixture Regression (GMR) generates a new set of datapoints (centers of 
Gaussian functions) 

Data-driven Regression

Blue: true function
Red: estimated function

Data-driven Regression
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Data-driven Regression

Estimate of the noise is important to measure goodness of fit.

Data-driven Regression
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Support Vector Regression (SVR) assumes an estimate of the noise 

model (e-tube) and then compute f directly within a noise-tolerance.

Estimate of the noise is important to measure goodness of fit.

Data-driven RegressionData-driven Regression
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Gaussian Mixture Regression (GMR) builds a local estimate of the noise 

model through the variance of the system.

Estimate of the noise is important to measure goodness of fit.

Data-driven RegressionData-driven Regression


